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Randomness in vertex models and directed walks
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Institute of Physics, Bhubaneswar-751005, India

Received 12 November 1991, in final form 8 May 1992

Abstract. We consider a d-dimensional random five vertex (modified KDP) model where
the vertex energies are site dependent, uncorrelated random numbers (>0). This model
maps onto many directed walks in a random environment. We show that the upper critical
dimension of the random vertex model is 2. We obtain a bound v=3/(d +3) for the size
exponent of a directed walk in a random medium. The breakdewn of hyperscaling in the
vertex model is connected to the anomalous growth of the free energy with an exponent
consistent with the corresponding one (x =2— 1/v) for a single directed walk.

The directed random walk (DRwW), over the last few years, has turned out to be the
unifying framework for widely different topics like vertex models [1, 2], commensurate-
incommensurate transitions (crt) [3], biomembrane transitions [4], flux-lattice melting
[S, 6], surface growth [7, 8], critical behaviour of disordered systems, spin-glasses
[9, 10] etc. Despite the current controversies, there is a consensus that the directed
walk in a random environment (to be called Ran-D-walk) is the simplest model showing
the features and complexities of critical behaviour of random systems. In this letter
we explore the connection between Ran-D-walks and a randomft ferroelectric five
vertex or the modified kpp model (see figure 1) on a d-dimensional diamond type
lattice [1, 2]. Similar two-dimensional models have been studied in the past [3, 11] in
connection with ¢IT, though a major impetus for such models, Ran-D-walk in particular,
is the potential application in flux-lattice melting (FLM) in impure (i.e. realistic) high
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in the former, temperature controls both the density of walkers (conjugate to T— T,
for FLM conjugate to H — H_ ) and the fluctuation,

For any 4, the system remains frozen in the ground state for T < T, and the directed
walk type excitations (figure 1) determine the thermodynamic behaviour of the high
temperature phase. This line density p (=n/V,, n being the number of walkers, V,

P T

Figure 1. Five vertices for the five vertex model. It costs an energy & to create a DRwW
{thicker line} at a site and each DRW traverses the whole laitice in the z direction. e{>0)
is taken to be a random number of finite variance.

t The detailed distribution of the randomness is not crucial, except probably the validity of the central limit
theorem (see below).
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the transverse volume) goes to zero as T T.+. Our focus is only on the critical
behaviour around this point. T, can be determined, like the pure case [1,2], by a
stability analysis of the ground state against the directed walk type excitations. The
thermodynamics is obtained by minimizing the free energy (making use of the conserva-
tion of lines in the z-direction; see [2, 4] for details)

fp)~—tp+s(p) (1)
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model (figure 1). In an equivalent continvum formulation,
obtained from the n chain Hamiltonian [5, 6]

m=% Y Idz[(%) + Vp(r.(2), z)]+v )} szsd“(ra(z)—ra(z)) )
a=]
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his function s(p) can be

-

where r,(z) is the d — 1 dimensional coordinate of point at a contour length z of chain
a, and the z integration is over the chain length that goes to infinity in the thermo-
dynamic limit of the vertex model. The v term is the mutual repulsion that leads to
the fluctuation dominated critical behaviour in the pure system. The random potential
Vp is taken to be a random, uncorrelated function of r and z, with Vi(#, 2) Vp{r', 2') =
A&(r~r')8(z—z") (overbar denotes average with respect to the disorder distribution).
The pure problem corresponds to A=0. The v dependent excess free energy (after
averaging over disorder) over and above the independent chain free energy gives s(p)
of (1) (see [2] for details).

We will not go into a detailed evaluation of s{p) here, but rather use the scaling
results of [11], concentrating on the exponents that are analogous to the pure case.
These are (i) the ‘incommensuration’ exponent B, p ~ r* where 1= T~ T, (ii) length
scale exponents », and »: £, (~(""+), giving the average spacing between two walkers,
and & (~r~"1} giving the average separation in the preferred z direction between two
collisions with neighbouring walkers, and (iii) the specific heat exponent & =1— 8. In
addition, we need two exponents for DRw, the size (or ‘roughness’) exponent v, (R?) ~
N?" where R is the end-to-end distance in the transverse direction for a length N, and
the free energy fluctuation exponent x {7]. For the pure case, ¥=3, x =0 are the
random walk values, but for the random problem the nature and value of v are still

UHUBI UﬂDdlC 1 ne le’lUUb ﬂblll]ldlﬂ& are: v= .3/ \u TJ} u-wry Lypc, SCL }_I. I.JJ 3 [aupcl unu—
versal; see [11]), (d +2)/2(d+1) [8], and a few others [6]. Of all these, v(d =1)=
and v(d =2)=% are considered to be exact [6, 8].
A scaling argument connects all. the vertex model exponents, 8, v, , v and a with

the size exponent » [2, 11]:

- (d-1)» v "

,B=(§(—l~:i):3- vJ_=VV||=-2"EI_—v) B=1-a. {3)
Extenswe RG analysis for the pure case (v =%} proved that ali of these relations are
exact [2]. Recently Natterman et al [6] showed that the relation for B is true as well
for the random problem, corroborating, in turn, the relations for », and »,, since the
scaling analysis is built on these. Furthermore, the exponents for the pure case were
shown in [1] to satisfy the anisotropic hyperscaling. However, extending that to the
random problem was not justified. In this letter, we show a few simple but significant
consequences of the scaling formulae, equation (3}, and address the gquestion of
breakdown of hyperscaling, thereby correcting an error in the estimate of the upper
critical dimension for the random problem in [1]). We also give the exact solution of
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the one-dimensional random vertex model to show that @ =1 (i.e. 8 =0) consistent
with equation (3).

Upper critical dimension. The upper critical dimension is obtained by equating a =0
or @ =1%. This gives from (3) d.=(2/#»)—1, as found by Natterman et a! and the
Kim-Kosterlitz formula for » locates d.=2 [6]. (Incidentally, hyperscaling in [1] gave
d.= (3/v}~3 which with superuniversality of » gave d.= 1.5. We now believe that this
is not correct.)

Hyperscaling and bound on v. For isotropic disordered systems, Chayes er al proved
that dv =2, where v is the appropriate length scale exponent [12]. Recently Schwartz
proved this formula under quite general conditions [13]. This latter proof can very
easily be extended to anisotropic systems to yield (d —1)», + » =2 and using (3) we get

4)

==
TS}
In other words the size exponent for a Ran-D-walk is bounded below by the Flory
_exponent (which is exact for d =1). (A similar bound has also been obtained in a
different way in [14].) That this bound is the Flory exponent is not accidental but is
intimately connected to the neglect of the anomalous fluctuation in energy (see below).
This anomalous growth of the free energy scale in a correlation volume leads to the
breakdown of hyperscaling in random systems [15]. We now show that this is also the
case for this random vertex model.
Taking a modified hyperscaling relation as

2—a=(d-1)p,+p+T (5)

we find, from the exponents in (3) that I'=(1-2#)/2(1 — v). The breakdown exponent
T vanishes if and only if =3 (i.e. a pure system). For pure systems with d >d_.=3,
hyperscaling is expected to fail and it is a trivial exercise to check in this case that the
dangerous irrelevant variable v modifies the hyperscaling relation through a singular
scaling function. In contrast, we see a failure even below the upper critical dimension
for the random system (v #3).

To get to the origin of the breakdown, we note that a Ran-D-walk is isomorphic
to a nonlinear Burgers equation or a surface growth problem [7, 11]. These latter
problems have been studied using rG [7]. The main results, when translated back to
the Ran-D-waik case, show that under a rescaling r > b, r, two scale factors are needed,
one for the z-direction as z- bY/*z (i.e. by =b'/*: this gives the factor of v in v, = vu;
see (3)) and the other for the free energy fluctuation which scales by a factor b¥ (height
k in [7]). For uncorrelated noise, the two exponents are related by y =2-1/v. In
recent numerical simulations on the overlap of two Ran-D-walks, Mézard also found
this scaling of energy to be essential to explain the data. (Note that y = 0 for the pure
case (¥ =3).) Hence, near the critical point, the free energy should behave like

f~bI“ by bl (6a)
Choosing b, ~ ™"+, by~ " with ¥, = vy as in (3) we obtain
2—a=(d=-1)y +y—-v.ox. (6b)

The breakdown ‘exponent —», xy = (1—2»}/2(1—») matches exactly with I' from (35).

+ Note that @ =0 is the mean field result. It _follows from (3), whence s(p) = vp?, if fluctuation in p is ignored.
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One-dimensional model. The general formula for 8 in (3) shows that a =1 for d =1
for both pure [16] and random problem; the latter case is studied here,

Let us consider a one-dimensional five vertex model, with random site dependent
energy & (with mean £ and finite variance). For a given realization a, it is easy to
show [16] that for N sites, the thermal average is
E exp(—BE,+ NIn2)
1+exp(—BE,+ NIn2)

(E,)= E,=Y¢. (7)
Since the thermal energy depends only on the total energy E,, the central limit theorem
ensures that in the limit N - o0, the quench averaged energy is

(Ey & exp[—-N(B£—In2)]

lim —= lim
Nl-l-lzo N . N-m1+exp[ N(Be—1n2)]1 ®

This indicates a first order phase transition at T.=&/kIn2and f~(T - T.} with « = 1.
Note that this is an example where randomness does not round a first order transition
[17].

We summarize that the general ‘hyperscaling type’ inequality for random vertex
models yields a bound on the geometric exponent v of a Ran-D-walk, »=3/(d +3).
The lower bound is the Flory exponent {11]. The random vertex model has an upper
critical dimension 2. The breakdown of the hyperscaling relation for the random
problem has been shown to be related to the anomalous growth of the free energy
scale, the appropriate exponent being y =2-1/v {7,9], which is zero for the pure
case. This also indicates that the free energy fluctuation exponent for directed walks
in random media is the same for a single walk as for a finite density case—in other
words, no new exponent is needed for the finite density system. We also proved the
existence of a first order transition in the random one-dimensional model, consistent
with the general formula for the exponents in (3).

We end with two speculations. The anomalous growth of the free energy can lead
to extremely slow dynamics [15] and it is tempting to surmise such a behaviour for

the vertex model and the flux lattice melting problem. Another interesting conjecture
ic the nncc-h:hfu of a dizorder dominated intermediatee nhnee for d>7 where the
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second transition to a ‘pure type’ high temperature phase (v =3) could come about
through depinning [18] of the Ran-D-walks. We would like to come back to these
problems elsewhere.
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