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LElTER TO THE EDITOR 

Randomness in vertex models and directed walks 
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Institute of physics, Bhubaneswar-751005. India 

Received 12 November 1991, in final form 8 May I992 

Absbd.  We consider a d-dimensional random five vertex (modified KDP) model where 
the vertex energies are site dependent, uncorrelated random numbers (>cl). This model 
maps onto many directed walks in a random environment. We show that the upper critical 
dimension of the random vertex model is 2. We obtain a bound "2 3/(d +3)  for the size 
exponent of a directed walk in a random medium. 7he  breakdown of hypencaling in the 
vertex model is connected to the anomalous growth of the free energy with an exponent 
consistent with the corresponding one (,y =2- I{") for a single directed walk. 

The directed random walk (DRW), over the last few years, has tumed out to be the 
unifying framework for widely different topics like vertex models [ 1,2], commensurate- 
incommensurate transitions (CIT) [3], biomembrane transitions [4], flux-lattice melting 
[5 ,6 ] ,  surface growth [7,8], critical behaviour of disordered systems, spin-glasses 
[9, IO] etc. Despite the current controversies, there is a consensus that the directed 
walk in a random environment (to be called Ran-D-walk) is the simplest model showing 
the features and complexities of critical behaviour of random systems. In this letter 
we explore the connection between Ran-D-walks and a randomt ferroelectric five 
vertex or the modified KDP model (see figure 1) on a d-dimensional diamond type 
lattice [ l ,  21. Similar two-dimensional models have been studied in the past [3,11] in 
connection with CIT, though a major impetus for such models, Ran-D-walk in particular, 
is the potential application in flux-lattice melting (FLM) in impure (i.e. realistic) high 
T, 
in the former, temperature controls both the density of walkers (conjugate to T- T,, 
for FLM conjugate to H - H e , )  and the fluctuation. 

For any d, the system remains frozen in the ground state for T < T,, and the directed 
walk type excitations (figure 1) determine the thermodynamic behaviour of the high 
temperature phase. This line density p (E n/ V, , n being the number of walkers, V, 
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F l p n  1. Five vertices for the five venex model. It casts an energy e to create a DRW 

ii'nicircr iinej ai a siie and each DRW iraverses ihe whoic iaiiicc in ihe z dircciion. e(>O) 
is taken to be a random number of finite variance. 

~ 

t m e  detailed distribution of the randomness is not crucial, except probably the validity of the central limit 
theorem (see below). 
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the transverse volume) goes to zero as T +  T,+.  Our focus is only on the critical 
behaviour around this point. T, can be determined, like the pure case [l, 21, by a 
stability analysis of the ground state against the directed walk type excitations. The 
thermodynamics is obtained by  minimizing the free energy (making use of the conserva- 
tion of lines in the z-direction; see [2,4] for details) 

fb)- - - f P + S ( P )  (1) 
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model (figure 1). In an equivalent continuum formulation, this function s ( p )  can be 
obtained from the n chain Hamiltonian [5,6] 

where r , (z )  is the d - 1 dimensional coordinate of point at a contour length z of chain 
a, and the z integration is over the chain length that goes to infinity in the thermo- 
dynamic limit of the vertex model. The U term is the mutual repulsion that leads to 
the fluctuation dominated critical behaviour in the pure system. The random potential 
V, is taken to be a random, uncorrelated function of r and z, with VD(r, z )  VD(r', 2') = 
AS(r  - r ' )8 (z  -2') (overbar denotes average with respect to the disorder distribution). 
The pure problem corresponds to A = 0. The U dependent excess free energy (after 
averaging over disorder) over and above the independent chain free energy gives s ( p )  
of ( I )  (see [2] for details). 

We will not go into a detailed evaluation of s ( p )  here, but rather use the scaling 
results of [ l l ] ,  concentrating on the exponents that are analogous to the pure case. 
These are (i) the 'incommensuration' exponent fi, p - f p  where f = T- T,, (ii) length 
scale exponents vL and uII : cL(-f-"l) ,  giving the average spacing between two walkers, 
and ~ll(-t-"ll) giving the average separation in the preferred z direction between two 
collisions with neighbouring walkers, and (iii) the specific heat exponent a = 1 -fi. In 
addition, we need two exponents for DRW, the size (or 'roughness') exponent v, ( R 2 )  - 
N2' where R is the end-to-end distance in the transverse direction for a length N, and 
the free energy fluctuation exponent x [7]. For the pure case, u=f , , y=O are the 
random walk values, but for the random problem, the nature and value of U are still 
unucrucoaic. inc  vanuuscsi:511iiiaicsarc: u - > / ( u  1') (riury iype,ac:c~~ij~~(supc~uru- 
versal; see [Ill), ( d + 2 ) / 2 ( d + l )  [8], and a few others [6]. Of all these, v ( d = l ) = f  
and u(d = 2) =; are considered to be exact [6,8]. 

A scaling argument connects all. the vertex model exponents, fi, v L ,  ulI and a with 
the size exponent U [2,11]: 

>.->-L... - : : - , , , a ? , , , - .  . - - r . * , , z  I ^ _ _ _ ^ _ _ _ :  

- ( d - l ) v  U - 
p =- uL=YuII=-  p=1-0. 

2 ( 1 - v )  2(1- U) (3) 

Extensive RO analysis for the pure case ( U = $ )  proved that all of these relations are 
exacf [2]. Recently Natterman et a/ [6] showed that the relation for fi  is true as well 
for the random problem, corroborating, in turn, the relations for vl and vll, since the 
scaling analysis is built on these. Furthermore, the exponents for the pure case were 
shown in [l]  to satisfy the anisotropic hyperscaling. However, extending that to the 
random problem was not justified. In this letter, we show a few simple but significant 
consequences of the scaling formulae, equation (3), and address the question of 
breakdown of hyperscaling, thereby correcting an error in the estimate of the upper 
critical dimension for the random problem in [l]. We also give the exact solution of 
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the one-dimensional random vertex model to show that a = 1  (i.e. a = O )  consistent 
with equation (3). 

Upper critical dimension. The upper critical dimension is obtained by equating a = 0 
or @=I? .  This gives from (3) d c = ( 2 / v ) - 1 ,  as found by Natterman er al and the 
Kim-Kosterlitz formula for v locates d,= 2 [6]. (Incidentally, hyperscaling in [l] gave 
d,= (3 / v )  - 3  which with superuniversality of v gave d,= 1 . 5 .  We now believe that this 
is noi cumeci,) 

Hyperscaling and bound on U. For isotropic disordered systems, Chayes et al proved 
that d u a 2 ,  where v is the appropriate length scale exponent [12]. Recently Schwartz 
proved this formula under quite general conditions [13]. This latter proof can very 
easily he extended to anisotropic systems to yield ( d  - 1) uL + vII a 2 and using (3) we get 

3 
d + 3  

”3- (4) 

In other words the size exponent for a Ran-D-walk is hounded below by the Flory 
exponent (which is exact for d = 1). (A similar bound has also been obtained in a 
different way in [ 141.) That this hound is the Flory exponent is not accidental hut is 
intimately connected to the neglect of the anomalous fluctuation in energy (see below). 
This anomalous growth of the free energy scale in a correlation volume leads to the 
breakdown of hyperscaling in random systems [15]. We now show that this is also the 
case for this random vertex model. 

Taking a modified hyperscaling relation as 

2 -a = ( d  - ])U,+ vll+T ( 5 )  

we find, from the exponents in (3) that r = (1 - 2 v ) / 2 (  1 - U). The breakdown exponent 
r vanishes if and only if Y =f  (i.e. a pure system). For pure systems with d > d,= 3, 
hyperscaling is expected to fail and it is a trivial exercise to check in this case that the 
dangerous irrelevant variable U modifies the hyperscaling relation through a singular 
scaling function. In contrast, we see a failure even helow the upper critical dimension 
for the random system ( v  # f). 

To get to the origin of the breakdown, we note that a Ran-D-walk is isomorphic 
to a nonlinear Burgers equation or a surface growth problem [7,11]. These latter 
problems have been studied using RO [7]. The main results, when translated back to 
the Ran-D-walk case, show that under a rescaling r -f b,r, two scale factors are needed, 
one for the z-direction as z+ b:“z (i.e. bll = by/”: this gives the factor of U in vI = uvli; 
see (3))  and the other for the free energy fluctuation which scales by a factor b: (height 
h in [7]). For uncorrelated noise, the two exponents are related by ,y = 2 -  11 U. In 
recent numerical simulations on the overlap of two Ran-D-walks, Mezard also found 
this scaling of energy to he essential to explain the data. (Note that ,y = 0 for the pure 
case (U=+).) Hence, near the critical point, the free energy should behave like 

( 6 0 )  f- b-(d-l)b-lbX 
I 11 I’ 

Choosing b,  - f - ” i ,  bll - f - ” u  with vL = vvlI as in (3) we obtain 

2 - a  = ( d  - l)u,+ v11 - vLx. ( 6 b )  

The hreakdown’exponent - v L , y = ( 1 - 2 u ) / 2 ( l - u )  matches exactly with r from ( 5 ) .  

t Note that (I = 0 is the mean field result. It follows from (3), whence s ( p )  = up’, if fluctuation in p is ignored. 
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One-dimensional model. The general formula for p in (3) shows that (I = 1 for d = 1 
for both pure [16] and random problem; the latter case is studied here. 

Let us consider a one-dimensional five vertex model, with random site dependent 
energy si (with mean F and finite variance). For a given realization a, it is easy to 
show [16] that for N sites, the thermal average is 

Since the thermal energy depends only on the total energy E,, the central limit theorem 
ensures that in the limit N + 00, the quench averaged energy is 

- 
(E)  . iexp[-N(PZ-In2)] 

lim -= Iim 
N-rm N N-ml+exp[-N(PF-h2)]' 

This indicates a first order phase transition at T, = F /  k In 2 andf-  (T- T,) with a = 1. 
Note that this is an example where randomness does not round a first order transition 

We summarize that the general 'hyperscaling type' inequality for random vertex 
models yields a bound on the geometric exponent U of a Ran-D-walk, U 2 3 / ( d  +3) .  
The lower bound is the Flory exponent [ l l ] .  The random vertex model has an upper 
critical dimension 2. The breakdown of the hyperscaling relation for the random 
problem has been shown to be related to the anomalous growth of the free energy 
scale, the appropriate exponent being ,y = 2 - l / u  [7,9], which is zero for the pure 
case. This also indicates that the free energy fluctuation exponent for directed walks 
in random media is the same for a single walk as for a finite density c a s e i n  other 
words, no new exponent is needed for the finite density system. We also proved the 
existence of a first order transition in the random one-dimensional model, consistent 
with the general formula for the exponents in (3). 

We end with two speculations. The anomalous growth of the free energy can lead 
to extremely slow dynamics [15] and it is tempting to surmise such a behaviour for 
the vertex model and the flux lattice melting problem. Another interesting conjecture 
is !he pnssibi!i!y nf I disnrder dnmin~ted i~k-.edi~?ee phase fnr !! 2 2, where !he 
second transition to a 'pure type' high temperature phase ( U  = 1) could come about 
through depinning [18] of the Ran-D-walks. We would like to come back to these 
problems elsewhere. 

~ 7 1 .  
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